Archive for the ‘Biomass’ Category

What are Feed-In Tariffs?

Saturday, April 3rd, 2010

The Government is introducing a system of feed-in tariffs (FITs) for small-scale low-carbon electricity generation from 1 April 2010. FITs are a per-unit support payment made directly to generators by electricity suppliers.

The new renewable electricity Feed-in Tariff scheme (FITs) will be available from 1 April 2010. FITs aims to promote domestic and small-scale renewable generation technologies up to a maximum capacity of 5 megawatts (MW). Ofgem will be running the behind the scenes administration of the scheme on behalf of the Department of Energy and Climate Change (DECC).

There are two routes to apply for FITs depending on the type and scale of technology installed:
• Generators with Microgeneration Certification Scheme (MCS) accredited solar, wind and hydro generating equipment up to 50kW in capacity that are installed by an MCS accredited installer can apply direct to a ‘FIT supplier’ – usually their energy supply company – with their installation details and to enquire about FITs payments. We expect the majority of installations will fall into this category.
• Generators with larger installations between 50kW and 5MW (or anaerobic digestion at 5MW or less) will first need to apply for accreditation through Ofgem’s Renewable and CHP Register before they can apply to a supplier for the tariffs.

Its intend that FITs will replace the Renewables Obligation (RO) as far as possible as the financial support mechanism for microgeneration (with a declared net capacity 50 kW or less) in Great Britain.
FITs will complement the RO by providing the simplicity and certainty needed to support householders, communities and businesses involved in small-scale generation. Installations with a capacity of 5MW or less will be eligible for FITs. Whereas the level of reward under the RO is exposed to fluctuations in the value of Renewables Obligation Certificates (ROCs), FITs will guarantee a fixed level of reward for each unit of electricity you generate, for as long as you are eligible to receive support.The Feed-In Tariffs are based on the electricity generated by a renewable energy system and there will be an additional bonus for any energy which is ‘exported’ to the grid. This means you get paid more for the energy you don’t use than for that which you do which encourages energy efficiency.

At times when you are producing less electricity than you are using, the shortfall will be ‘imported’ from the grid and you will pay your electricity company for this in the usual way.

The Feed-in Tariff therefore gives you these three financial benefits:

  1. A ‘generation’ tariff based on the Total generation and the energy type, plus
  2. An ‘export’ tariff for any energy Exports when generating more than you need, and because you are now producing some of the energy you use
  3. Lower bills from your supplier for the energy you Import from them

What you need to do
You will require an additional electricity meter to measure the electricity that your system is generating, and also to measure how much is being fed back into the electricity grid.

Once you have installed your generating technology you must inform your chosen energy supplier that you are eligible to receive the FIT. The supplier will then register your installation onto the Central FIT Register, which is administered by Ofgem. Payments will be made by your energy supplier at intervals to be decided between you and your supplier. You may be required to provide meter readings to the suppliers if requested.

If you want to opt out of the guaranteed export tariff you must inform the supplier. You may want to do this if you chose to use a power purchase agreement.
Tariff levels, for technologies installed between 15th July 2009 and 31st March 2012

Technology___________Scale____________Tariff level (p/kWh)________Tariff lifetime (years)
Solar electricity (PV)____≤4 kW (retro fit)___ ____41.3____________________25
Solar electricity (PV)____≤4 kW (new build)______36.1____________________25
Wind_______________≤1.5 kW____________34.5_____________________20
Wind _______________>1.5 – 15 kW________ 26.7 _____________________20
Micro CHP ___________≤2kW _____________10.0 _____________________10
Hydroelectricity _______≤15 kW ____________19.9 _____________________20

Tariff levels vary depending on the scale of the installation.

The tariff levels shown in the table above apply to installations completed from 15th July 2009 to 31st March 2012 for the lifetime of the tariff. After this date, the rates decrease each year for new entrants into the scheme.

All generation and export tariffs will be linked to the Retail Price Index (RPI) which ensures that each year they follow the rate of inflation.
What payments will you be eligible for, and how can you claim them?

The tariffs available and the process for receiving them vary, depending on when the technology was installed, and whether the system and the installer were certificated under the MCS scheme:

The following advice applies to domestic installations. If you have installed a qualifying electricity-generating system non-domestic property with a grant from the Low Carbon Buildings Programme, see the Low Carbon Buildings Programme website for further guidance.

In October 2008 the UK Secretary of State for Energy and Climate Change, Ed Miliband, announced that Britain would implement a feed-in tariff by 2010, in addition to its current renewable energy quota scheme Renewable Obligation Certificates”. In July 2009, he presented UK’s new Feed-in Tariff Programme, expected to begin in early April, 2010. Miliband has given a new name, “clean energy cash back”, to this policy which falls fully within the framework of Feed-in Tariffs and is based on a few, extensively discussed, key elements:

a) Less than 10% of Britain’s electricity consumption, by 2020, will be provided by renewable energy sources. The 2% target requires the “green generation” of only 8 billion kWh (that is 8 TWh) per year. France, thanks to its system of Feed-in Tariffs, in 2008 generated already nearly 6 TWh, and only from wind energy; in the same year Germany generated more than 4 TWh from solar PV (photovoltaic), and reached 40 TWh from wind energy.

b) The project involves only renewables sources which can produce less than 5 MW energy; so, UK’s new FiT’s project cap is 5 MW. Depending on law, only renewable energy sources and generators within this cap can benefit from tariffs: the government still prefers resorting to the Renewable Obligation Certificates mechanism for developing larger projects.
To prevent companies from moving large scale (for example big wind) projects from the ROCs to the Feed-in Tariff programme, a number of anti-gaming provisions has been inserted in the policy design; this should avoid the breaking up of bigger projects into several small ones, to fit within the 5 MW energy size cap.

c) The contract term is 20 years, 25 years for solar photovoltaic projects: this means that, starting from 2010, British providers of Wind Energy, Hydropower, Energy from Biomass and Anaerobic Digestion falling within the Renewable Sources eligible in accordance with the provisions of the proposed FiT scheme will be rewarded with a tariff rate guaranteed for the next 20 years – 25 years for Solar PV generators. In this way UK’s renewable energy industry has a somehow long-term certainty, and can advantage of the FiT over other policy options.

d) Costs for the programme will be borne by all British ratepayers proportionally: all electricity consumers will bear a slight increase in their annual rate, thus allowing electricity utilities to buy renewable energy generated from green sources at above-market rates set by the government.

e) Generators can be green fields (they do not have to be metered customers).

f) The new UK’s Feed-in Tariff Programme review is scheduled for 2013.


Friday, June 5th, 2009


Biomass is feted to play one of the most important roles in reducing our reliance on fossil fuels, meeting the UK’s transport needs and providing the greatest contribution to Kyoto targets.

PPS 22 defines biomass as “the biodegradable fraction of products, wastes and residues from agriculture (including plant and animal substances), forestry and related industries, as well as the biodegradable fraction of industrial and municipal waste.”

Some examples of biomass use in the UK include:

  • Power stations taking advantage of locally available biomass feedstocks such as straw, wood and chicken litter
  • Farm slurry, sewage sludge and food waste being anaerobically digested to produce biogas for heat and electricity production
  • Landfill gas being captured for power generation
  • Housing developments and town regeneration projects making use of communal woodchip boilers
  • Individual homes installing automated wood pellet and log boilers to provide most, if not all, of their space and hot water needs
  • Waste vegetable oil and virgin rape oil undergoing trans-esterification for biodiesel production
  • Bioethanol being produced from biomass by the hydrolysis and sugar fermentation processes, and then used as a renewable petrol substitute.

New Eco-friendly Process for Wood-based Bio Fuels

Friday, May 29th, 2009

New Eco-friendly Process for Wood-based Bio Fuels

Scientists at Queen’s University Belfast have discovered a new eco-friendly way of dissolving wood using ionic liquids that may help its transformation into popular products such as bio fuels, textiles, clothes and paper.

Dr Héctor Rodríguez and Professor Robin Rogers from Queen’s School of Chemistry and Chemical Engineering worked along with The University of Alabama, Tuscaloosa, AL, to come up with a more cost and energy efficient way of processing wood.

Their solution, which is reported in the journal Green Chemistry, may see a new sustainable future for industry based on bio-renewable resources. At present wood is broken down mainly by the Kraft pulping process, which originates from the 19th century and uses a wasteful technology relying on polluting chemicals.

The key reason for tolerating this method is that it is very difficult to break down and separate the different elements of wood. Until now any alternatives to the process have presented similar problems.

The Queen’s researchers found that chips of both softwood and hardwood dissolved completely in ionic liquid and only mild conditions of temperature and pressure were needed. By controlled addition of water and a water-acetone mixture, the dissolved wood was partially separated into a cellulose-rich material and pure lignin.

This process is much more environmentally-friendly than the current method as it uses less heat and pressure and produces very low toxicity while remaining biodegradable.

Professor Robin Rogers said: “This is a very important discovery because cellulose and lignin have a wide variety of uses. Cellulose can be used to make products such as paper, biofuels, cotton and linen, as well as many other commodity materials and chemicals.

“Lignin can be used to create performance additives in various applications, such as strengthening cars and airplanes with a fraction of the weight of conventional reinforcement materials. It is also a source of other chemicals which are mainly obtained from petroleum-based resources.”

Dr Héctor Rodríguez said: “The discovery is a significant step towards the development of the biorefinery concept, where biomass is transformed to produce a wide variety of chemicals. Eventually, this may open a door to a truly sustainable chemical industry based on bio-renewable resources.”

The approaches that the scientists are considering for the future include the addition of eco-friendly additives to the ionic liquid system or the use of catalysts.

The researchers are hoping to eventually achieve better dissolution under even softer conditions and are also trying to achieve complete separation of the different elements in one single step.

Both teams are also focusing on biomasses which are rich in essential oils and can later be used in processes such as the manufacture of fragrances.

The Journal reference for the study is:

Sun et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Green Chemistry, 2009; 11 (5): 646 DOI: 10.1039/b822702k

Source: Science Daily .

Biomass residues

Tuesday, May 19th, 2009

Byproducts of green plants used for other production purposes can be used as fuel, providing a source renewable energy.

Biomass residues are the organic byproducts of green plants used for things such as food, fiber and forest production.  Food industry residues include grain crops, for instance corn and wheat, as well as waste such as hazlenut shells and fruit stones. Other residues include animal waste and forest harvest; small trees and branches left after felling which can be made into wood chips.

These residues can all be used as a fuel source, fuelling a combined heat and power plant to produce an alternative source of energy to fossil fuels.